Graph-Grammar Based Completion and
Transformation of SDL/UML-Diagrams

Position Paper
Ulrich A. Nickel, Robert Wagner

University of Paderborn
Warburger StraRe 100
D-33098 Paderborn

Germany
[duke, wag25]@uni-paderborn.de

1 Introduction

In the last years the Unified Modelling Language has become more and more.pbpular
has been successfully applied in mapplication domains. Thus, maaffort is put into

the etension of the UML in order to makit applicable in formerly untypical domains.
One &le is the deslopment of UML-R [SGW94]. UML-RT extents the UML by
adding the possibility of defining the communication structure of a digtdtsystem. Un-
fortunately it lacks of the definition of a precise semantics. Meeemften there are other
graphical specification techniques which are commonly used. In the domain of communi-
cation engineering, the Specification and Description Language (SDL) [SDL96] has
emepged to a standard. Additionalighe semantics of SDL is formally defined.

At our department, we arearnking on a project which aims at thevdlopment of a seam-
lessly intgrated graphical language for the specification of disteith production control
systems. W emply SDL for the specification of theverall communication structure of
the system. Whereas the modelling of compleject structures is a typical field of appli-
cation for the UML. Therefore, we deloped a graphical language, which uses SDL block
diagrams, UML class diagrams, and UML bébar diagrams like collaboration dia-
grams, actiity diagrams, and statecharts [KNNZO0Q].

In a first step, the engineer models the topology of the system. This includes the identifi-
cation of the participating processes and the definition of the communication channels and
all kinds of interchanged signals. In a second step, an initial class diagram is automatically
generated out of the SDL block diagram which cam be refined. Additional steps follo

until the structure and the befiaur of the system are completely defined.

One of the major problems of such an approach is that therevaralseys of mapping

one diagram to anothén mary case tools the automatic generation is hard coded and can-
not be changed, if necessamhus, we deeloped a flgible transformation mechanism
which is based on graph-grammars. Therelgycan formally define the mapping between
the diferent kinds of diagrams, which also allothe automatic checking of consistgnc

2 Example

As an éample we use ServiceMachinsystem illustrated in Figurk A ServiceMachine
system dkrs services to a number of clients. First, each client must open a session by
sending thé.ogin signal to theMonitor process. Th#lonitor process xsts from initiali-

zation time. TheMonitor process creates améerviceprocess for each user which has
opened a session. Also, alid communication path between the creé@edviceprocess

and the client is established. After the reception oLttginacksignal, the user can ask

for the service with the signB®equestWhen a user terminates a session with the signal
Logout theServiceprocess also terminates and informsNtaitor process.

system ServiceMachine

block Server

[t]

o 1 LMonltor 1,1)

[Terminate]

R3
Loginack , Logout,
Result Request (
* Service (0,)
c2 R2

Figure 1, SDL specification of the ServiceMachine system

The mapping of th&erviceMachinesystem to UML is illustrated in Figu Basically

each process is mapped to anvactiass, e.g. procel®nitor is mapped to the clab4on-

itor and procesServicels mapped to the claSgrvice Additionally, each class capable of
receving a special signal implements a method named equal to the signal. Communication
channels and signalroutes form distinct paths, which are transformed to associations be-
tween the communicating process classes.

Monitor L L Service Environment ServiceMachine
fogin() . __{logout() loginack()
terminate() monitor ~ service request() result()

monitor [0..1 service| 0.1 env |0..1 env| n

Figure 2, UML class diagram of the transformed ServiceMachine example

TheEnvironmentlass represents the user and handles incoming and outgoing signals ad-
dressed to thBerviceMachinsystem. In contrast, ti&erviceMachinelass is responsible

for system initialization and process management. This comprises creation and termina-
tion of processes and thalidation of the maximum number of process instances in the

system. This &y we guarantee the synchronous semantic of process creation defined in
SDL

Since our intgrated deelopment evironment is capable of editing SDL and UML dia-
grams [KNNZ0O0, NNZ00, NZ99], we considered to use story-diagrams to specify the
transformation between theseotkinds of diagrams. From this story-diagram specifica-
tion, we will generate Ja source code, which can be gr&ed in the deelopment ewi-
ronment andxecuted on demand. Thisaywwe achiee an automated mapping from SDL
block diagrams to UML class diagrams. Note that both the specification and the code gen-
eration has to be done only once.

3 Graph-Grammar Based Transformations

The specification of changes to application specific object-structures is a weil kpe
plication area for graph grammars [Roz97]. A graptrite rule describes the changes to

an object-structure by a pair of before and after snapshots. The before snapshot specifies
which part of the object-structure should be changed and the after snapshot specifies ho

it should look lile aftervards, without taking care of wathis changes are achies.

While graph grammars are appropriate for the specification of object-structure modifica-
tion, they lack appropriate means for the specification of contralsflo

To overcome this problem we introduced UML aity diagram as control fl® notation

for graph revrite rules, cf. [JZ98, FNTZ98]. In order tadilitate the use of graphwete

rules for object-oriented designers and programmers, we additionally adapted UML col-
laboration diagrams as a notation for object-structuseiteerules. er this combination

of actvity diagrams and collaboration diagrams we use the saong-diagrams

We implemented a case tool called Fufabahich uses an SDL/UML abstract syntax
graph (ASG). A part of the ASG is presented in FigurBor more details about our inte-
grated meta model of SDL/UML see [KNNZ0O].

| Project | [Diagramitem |
items
4 I [|
% Diagram |[UMLClass]JS;%_[UMLGeneralization
[]
[SDLDiagram | [UMLClassDiagram |

SDLConnectable

connectables

SDLBlock | [SDLProcess |

SDLSystem

Figure 3, SDL and UML Metamodel used in Fujaba

1From UML to Java and Back Again. See http://www.fujaba.de for further information.

In our SDL model, blocks and processes are treatadrasubdiagrams. Thus, both model
elementsSDLBIlockandSDLProcessinherit all properties frorBDLConnectablewhich

is a kind ofSDLDiagram Each top leel system is a kind of block and therefore inherits
from SDLBIlock EachSDLBIockcan hold via theonnectablesissociation either further
subblocks or processesjtmot both.

With some knwledge about the object-structure used in Fujaba, we can specify the trans-
formation by using story-diagrams. Figurdlustrates a sample transformation of a SDL
system to UML classes. Because of lack of space, the transformation of paths and signals

is not demonstrated.
@ transform (SDLSystem system)

(UMLProject project = UMLProject.get ())

/ project \

+++4+

diags
+++++
S diagram:UML ClassDiagram .
items name =system.getName() items

+++++
SystemClass:UMLClass

+++++
EnvClass:UMLClass

name =system.getName()

name =“Environment*

v
@ \\ [each time] / @

+++++
items

path_expr
+H+++
=~ cls:UMLClass
rocess:SDLProcess |/ K name =process.getName()
[end]

Figure 4, Story-diagram for the transformation of SDL processes to UML classes

In the first actrity, the current project is retvied and stored in the locahnableproject

This is achiged by a simple call ttdMLProject.get () In the nat actvity, a nev UML-
ClassDiagrammodediagramnamed equal t8DLSysterdiagram is created (siva by the
+++++’ annotation and the assertipame=system.getNamg@nd a link between the
project and the creatédMLClassDiagranmode is inserted. In the same manner the class-
esEnvClassandSystemClasare created

Next, the flav changes to the weactvity. In this actity, a path gpressiorpath_epr is
used to find all nodes of ty@DLProcessFor each process found, the transition annotated
with [each_timgis executed. There, a neUMLClassnode is created and reees the
same name as the conside&l Processiode. After successful creation, the control is
given back to the pathxpression and the ReSDLProcessiode is being searched fdir

all SDLProcessodes hee been considered, the stopdtfiis reached and the (partial)
transformation is complete.

4 Conclusions and Future Work

In this position papemwe presented a graph-grammar based approach for the automatic
completion and transformation of SDL and UML diagrams.

Currently we implement these concepts in Fujaba. This case tool has hetopdd at
our department since Member 1997. It supports the described parts of SDL and UML
and is able to generatgezutable Jaa-code.

As future work, we plan to deslop a system for the intelligent management of consigtenc
rules. The system will takinto account that some consistenbecks depend on each oth-

er. Moreover, it will allow the user to classify inconsistencies as recommendation or po-
tential inconsisteng for example.

5 References

[FNTZ98] T. Fustier, JNiere, L.Torunski, and AZindorf. Story Diagrams: A new Graph Rewrite Lan-
guage thased on the Unified Modeling Language. IBr@gels and G.Rozenberg, editdPsoc.
of the é Int. Workshop on Theory and Application of Graph Transformation (TAGT), Pader-
born, GermanySpringer Verlag, 1998.

[JZ98] J.H. Jahnke and Alndorf. Specification and Implementation of a Distributﬁd Planning and In-
formation System for Courses based on Story Driven ModelinBrdo. of é International
Workshop on Software Specification and Design, Ise-Shima, Jaages 77-86. IEEE Compu-
ter Society Press, 1998.

[KNNZ00] H.J. Kdéhler, UNickel, J.Niere, and AZiindorf. Integrating UML Diagrams for Production
Control Systems. IfProc. of the 25‘ Int. Conf. on Software Engineering (ICSE), Limerick, Ir-
land. ACM Press, 2000.

[NNZ00] u. Niclﬁel, J.Niere, and AZindorf. Tool demonstration: The FUJABA environmen®ioc. of
the 25 Int. Conf. on Software Engineering (ICSE), Limerick, IrlaA@M Press, 2000.

[NZ99] J.Niere and AZlndorf. Using Fujaba for the Development of Production Control Systems. In
Proc. of Int. Workshop and Symposium on Applications Of Graph Transformations With Indus-
trial Relevance (AGTIVE), Kerkrade, The NetherlanddCS. Springer Verlag, 1999.

[R0z97] G. Rozenberg, editoHandbook of Graph Grammars and Computing by Graph Transformation
World Scientific, Singapore, 1997.

[SDL96] International Telecommunication Union (ITU), GeneMaJ-T Recommendation Z.100: Speci-
fication and Description Language (SDI1P94 + Addendum 1996.

[SGW94] B. Selic, G.Gullekson, and RWard.Real-Time Object Oriented Modeling/ILEY, 1994.

